I must admit Macro photography is not exactly my favourite genre both underwater and topside however I do enjoy a bit of critter hunting.
I was sure that the A1 would be an absolute beast for topside wildlife and underwater wide angle, however I did not feel comfortable at all with the performance of the Sony 90mm Macro lens.
It has a reputation for hunting and a lot of focus breathing that make it hard to use for topside focus stacking.
I have been playing with the lens topside and I did see examples of both so I was somewhat skeptical taking it underwater.
Camera Settings
I was perhaps over worried so I set up the camera for the worst case scenarios:
Focus limiter set to 0.3 – 0.5 meter
CAF priority set to Focus
Aperture drive – Focus priority
I went in with autofocus set to tracking flexible spot.
Port and Focus Gear
I have always mixed feelings for focus gears and mostly I use it to make sure I am hitting the minimum working distance and therefore maximu magnification.
Nauticam 37147 SE90-F focus gear for Sony 90m f/2.8
The focus gear for this lens is a large item and does not allow to operate the focus clutch. The operation is quite easy as the focus ring does not have an excessive long run.
I already own the 45 Flat Port that I use for the Sony 28-60mm and also have the 35.5 N120 to N120 port adapter so I thought how do I make this 105mm long?
Nauticam 21325 N120 to N100 25mm port adaptor
Nauticam makes convenient adaptor rings of various length to go from N120 to N100 port size. I got the 25mm that resulted in a saving of £441-260=£181 which I used to buy another part.
The rig as assembled looks like this. In effect even the 110 port starts wider and gets narrower.
Sony A1 Nauticam Macro Rig
Before going to the pool I realised the housing does not have an M10 mounting point but you can adapt one of the points that go to the bars connecting the angle. Will be done at some point. So I went in without focus light in a very very very dark pool.
Pool Session
As I packed my props I realised I did not really have any good macro target however a friend came to the rescue. An instructor of a diving center that uses the same pool brought a small leopard and octopus that sank and were perfect targets.
As you probably know I am obsessed by obtaining the absolute maximum performance from each lens. And this for a macro lens means shooting at the best aperture, for this lens f/4-5.6 and stacking. However this is not available underwater. You need to pull your shot from a single image and this means the lens won’t be at the best performance.
I started at f/11 which gives a respectable MTF50 and to be honest I am impressed!
Octopus f/11 angleTiger coming f/11
I then pushed the lens to f/16 I could see resolution dropping as depth of field was going up.
Octopus front f/16Tiger side f/16
In order to get depth of field of an overall scene with the octopus I had to go all the way to f/22 diffraction zone.
Tiger f/22 sideOctopus wide f/22
Yes with the high resolution of the sensor those images are still ok or at least so they seem to me.
Tiger Bokeh f/2.8
I think this lens wide open makes an amazing bokeh that will probably be still there at f/4 so something to check.
Field Impression and Ergonomics
First of all I did not regret setting the lens to close range using the focus limiter. This will give you a frame 19 cm wide if you feel that is too small and you are just trying to get some fish portraits perhaps leaving this to full is a better idea. Likewise if your targets are bigger.
I did not get any hunting despite the dark conditions and I am not sure if this was due to this setting or if this helped.
CAF worked in all situations the A1 can practically see in the dark however in order to get focs tracking and eye detection working (it detected the eye of the leopard) I needed to switch on the focus light of the strobes.
I believe tracking and detection requires a level of scene brightness higher as the camera is effectively in video mode. When you half press the aperture drive meant it would focus thought it had not tracked anything. I got 2 shots not focussed on the subject because I moved.
The focus gear I believe is not required unless you want to do super macro or to make sure you are as close as you can get but I do not regret having it as the run is pretty short with the focus limiter is on.
Conclusion
Alex Mustard tried the 90mm with the A1 for blackwater and said it was better than the Nikon D850 with the 60mm which is a well known blackwater combination. My tests confirm this combination is very very powerful even in the dark and with a little bit of light it will focus on anything. If the lens goes back and forth is because you are close or over 1:1 reproduction ratio.
Overall my concerns apperad not justified and this combination is a solid performer. Probably next steps are getting an SMC magnifier to push this even further.
The subject of rectilinear wide angle lenses and underwater optical performance has been beaten to death.
Most recently some photographers and videographers have done without rectilinear lenses altogether citing the horrible performance at the edge of the frame as the primary reason to shoot lenses with barrel distortion being those fisheye or standard lenses with an added water contact optic.
Is it all justified? Should you stay away from rectilinear lenses altogether?
Of course not. Rectilinear lenses have a place in underwater imaging that is there to stay but…
There are many many buts so let’s dive into some demistification and general considerations.
Topside Performance of Wide angle lenses 17mm use case
The vast majority of underwater shooters do not perform any type of topside imaging being that photo or video and use their set up only underwater with the exception of the odd event or those that like to shoot macro above and below this is where we stand in most cases.
In order to ascertain if the performance of the wide angle lens in water deteriorates it is appropriate to determine the performance of said lens topside. This is something that not many people are in fact able to ascertain. You can read equipment review but it is never the same thing.
I have recently invested in a Sony A1 and underwater housing and I decided to purchase a rectilinear wide angle lens. I always try to buy lenses that are good topside and underwater and my choice has fallen on the Tamron 17-28mm F/2.8 Di III RXD.
Several reasons for buying this lens I will list the most important are:
Close minimum focus distance (19 cm wide – 26 cm tele)
Lens does not extend when zooming
Reasonably compact (99 mm and 420 grams)
Not too wide
Items 1,2 above are important underwater and 3,4 are also important topside when you use the lens on a gimbal or when you shoot interiors or close up and you do not want apparent perspective distortion.
I have been shooting the Tamron topside on trips and I have been very pleased with it. Before taking it underwater I wanted to understand what to expect.
I built my scene using my underwater props on a table top and started taking a series of shots from f/8 to f/22 to see the results. What follows are a set of images taken on land with the focus on the eye of the chick.
Topside f/8 subject
At f/8 the first row of props is blurry and also the leaves behind are not sharp. The edges are soft.
This is due to lack of depth of field not to the bad performance of the lens.
Topside f/11 subject
At f/11 we have more depth of field however the props at the edges and the nearest part is still soft.
Topside f/16 subject
By f/16 all the props are in focus, the edges of the math are a tad soft but overall this is the right place to be.
Topside f/22 subject
By f/22 pretty much everything is in focus but the image quality has dropped considerably.
In conclusion topside we need to close down to f/16 to have all the props in focus on this scene.
Just so we are clear there is not an issue of edges or else there is simply lack of depth of field as we are shooting a close up.
Underwater Performance of Wide angle lenses 17mm use case
After rigging my camera and lens with the Nauticam 180mm dome it was time to hit the pool and try underwater.
What follows are a series of shots from f/8 to f/16 with focus on the chick as the topside shot.
Tamron 17mm f/8 Focus Mid
The image at f/8 looks very much like topside and lacks depth of field, however interestingly the bush behind the chick is relatively sharper to the topside scene. The dome port is increasing the depth of field behind the subject.
Tamron 17mm f/11 Focus Mid
By f/11 there is a considerable improvement all across the frame the items at the edges are still soft pretty much like the topside image.
Tamron 17mm f/16 FocusMid
By f/16 we are where we should be. Note how the entire set of props is in focus exactly like the topside image and only a slight deterioration on the very left of the frame prop.
Move your focus…
Dome ports increase the depth of field of the lens as infinity becomes nearer however they also shift the depth of field of the lens because the virtual image is closer and most of the depth of field shifts behind.
With that in mind I focussed on the first prop to see what happens.
Tamron 17mm f/8 Focus Near
At f/8 the first line is sharper even the props at the edges are substantially better and I would say acceptable however the leaves behind are out of focus.
Tamron 17mm f/11 Focus Near
At f/11 the edges are good and so are the props behind the chick with the exception of those really further back where we are running out of depth of field.
Tamron 17mm f/16 FocusNear
By f/16 focussing on the near prop we have pretty much everything in focus.
As final example this is a shot at f/11 with focus just behind the fake coral red and yellow on the right.
Tamron 17mm f/8 FocusSide
With the exception of the very very edge of the right frame which is bordering the dome edge the image is sharp throughout.
Why are the images not blurry?!?
You are now starting to ask why some images you see on the web look horrible and mine don’t? This is a legitimate question to which there are at least five answers.
Lens working distance
The Tamron 17-18mm has a working distance of 19 cm and is 9.9 cm long. From my calculation the entrance pupil is around 26mm from the front of the lens. This means that a dome radius of 10cm is sufficient to be able to focus right on the port. All other lenses for the Sony E-mount have working distance of 25 to 28 cm and would need extremely large radius to be able to focus on the glass.
Wrong Extension Ring
The Nauticam 18809 wide angle dome port is not a classic dome but has design without a flat base. The port has 11cm radius of curvature and is 83mm deep 180mm wide this means the entrance pupil needs to be 27mm behind the extension.
Nauticam 18809 180mm Wide angle dome port
Nauticam recommended extension is 40mm when combined with the 35.5mm N120 to N120 port adapter. Due to the shape of the lens this cannot be used with the N100 port as the zoom is close to the front of the lens.
Tamron 17-28mm with Nauticam zoom gear
Underwater housing manufactures unfortunately do not apply any science to the selection of domes and extension for a lens but out of pure coincidence the 40mm extension ring is what this lens requires.
Tamron 17-28mm 35.5 adapter and 40mm extension
Nauticam criteria for the 180mm port seems to be the lens needs to be more or less flush with the extension ring. In our case the entrance pupil is 26mm behind and the extension ring is a few mm over so we are more or less spot on. THIS IS ENTIRELY A COINCIDENCE!
With the 40mm extension the glass port will be exactly 11 cm from the entrance pupil and focus right on the surface.
Unfortunately the principles applied by manufacturers which are either to be flush with the ring or the dome mount or to extend until it vignettes generate loss of angle of view and distortion.
One of the worst offender is the Nauticam 230mm glass dome, where the rule of extend until you can generates pincushion distortion (edge pulling) effect.
Software Correction of Distortion
The lens correction has a warping effect on the edges even when the dome is correctly placed.
Exteme edge at f/11 with distortion correction offExtreme edge at f/11 with distortion correction on
If you have a full frame camera or a camera where you can disable the correction make sure this is set that way.
For systems where lens correction is baked in the lens profile (micro four thirds) ensure to use a program that can disable the correction such as DxO Photolab for best results.
Constant Autofocus with subject tracking
As we have seen in most cases it is better not to focus bang on the subject but to focus closer or even at the side of the frame and work out the depth of field.
Many users use subject tracking that may seem a wonderful idea and works very well with a flat port however underwater results in blurred edges due to the depth of field distribution of the dome port unless you close the aperture until you can care less.
If you want to ensure the edges of your rectilinear wide angle shots are sharper use single autofocus and position the focus strategically in the frame the dome compression will do the rest.
Superwide lenses (<16mm)
When your lens is superwide you may have all effects on top of each other: pincushion distortion because your extension is calculated with the ‘go until vignette’ method, distortion correction in software, subject tracking, lens with long working distance and to make it worse perspective distortion and spherical aberration which occur when the lens is very very wide.
Choosing your rectilinear wide angle lens
I have computed all lenses avaialble for my A1 and calculated the ideal radius of a dome in this table. Unfortunately while the 230 port has a wider angle of view it has a radius of 12 cm which is only 1 cm more than the 180mm port. The choice of port is therefore driven by angle of view and not radius as 1 cm does not change much. Most lenses would need 15 or 16 cm radius to be able to focus close to the glass.
Brand
Model
Working Distance
Field of View
Radius Required
Port
Sony
SEL1224GM
280
122
152
230
Sony
SEL1224G
280
122
152
230
Sony
FE14 1.8 GM
250
114
157
230
Sony
SEL1635GM
280
107
169
180
Sony
SEL1635Z
280
107
169
180
Sony
PZ1635G
280
107
169
180
Sigma
1424DGDN
280
114
164
230
Tamron
1728RXDIII
190
104
99
180
Zeiss
18mm
250
100
177
250
Sony e-mount rectilinear lenses and ports
You can easily see that the Tamron 17-28mm has much better design characteristics to go into a dome port and this is the lens to buy.
From my tests there is no need of any field flatteners and correction lenses it works fine out of the box as the lens has minimal field of curvature and zero spherical aberrations.
Pool Session
If you are not happy with the CFWA studio scene here are some images from a recent pool session. Many f/8 and f/11 images no need to close the aperture more if you don’t have anything close and shot in single autofocus.
Skill training 17/8Dave Side 17/8Female Diver Side 17/8Drysuit Diver Front 17/11Maddy Portrait 17/11Rush Diver Side 17/11Manu Side 17/11Dad Daughter 17/8
Quite interesting to see the fins at the edges of the f/8 shots.
If there is one challenge of rectilinear lenses is that you need strobe power. The narrower field of view compared to a fisheye means that you are standing further back that in turn means more strobe power and more particles between you and the subject.
Should I buy a rectilinear wide angle lens for underwater use?
My answer is definitely yes but each system will have the special lens, the one that focuses close, does not require a large radius and is not too wide and not too narrow (16-18 is ideal) however examine carefully images of others and check the lens construction as your suggested extension may be wrong.
But when your lens is fit for purpose using the correct size dome and the proper extension you will get high quality images that match or beat fisheye like lenses and water contact optics.
As example here an image shot with a canon 8-15mm at close range f/11. Does it have much better edges?
VideoDiver
And here a WWL-1 image at f/8
WWL-1 f/8
I cannot see any advantages of the fisheye like lenses at the edges at the same aperture in fact in both cases but judge for yourself.
Unfortunately Phil used the Sea and Sea correction lens an expensive accessory that this lens does not require but as soon as I am in open water I will post images myself.
Since many years Canon and Nikon full frame users are able to use their respective 8-15mm with a teleconverter underwater, however this is not a very popular configuration.
In this article I will look at the Canon 8-15mm with the Kenko Teleconverter 1.4x for Sony full frame cameras.
First and foremost a teleconverter is not cropping the image it has optical elements. Cropping means reducing the resolution at sensor level while a teleconverter induces a deterioration of the image and possible defect but does not affect the sensor resolution. Generally 1.4x TC is much better than 1.4 crop. If you find yourself cropping a lot your fisheye shots or even using the 8-15mm in APSC mode the teleconverter may add some real value to you so read along.
Parts Required
In addition to the set up required to use the Canon 8-15mm you need 3 additional items:
Kenko Teleplus HD Pro 1.4 DGX
Kenko 1.4 Teleconverter
Canon 8-15+TC zoom gear
Extension ring N120 20mm
N120 Extension ring 20Canon 8-15mm with Tc and gear
The benefits of this set up are clear:
Unique field of view
Smaller additional bulk
Relatively low cost
Some readers have emailed asking if the Kenko is compatible with the Sigma MC-11. I do not recommend using the Sigma MC-11 with the Canon 8-15mm because it only supports single AF and it is unclear if the Kenko will work or not and how well. I have tested with the Metabones smart adapter and this is the one I recommend.
Field of view
The 8-15mm lens with teleconverter will give you access to a zoom fisheye 15-21mm with field of view between 175 and 124 degrees. This is a range not available with any other lens of water contact optic that stop normally at 130 or 140 degrees.
Additional Bulk
The additional items add circa 370 grams to the rig without teleconverter and make is 20mm longer due to the additional extension. The additional fresh water weight is circa 110 grams.
Cost
The latest version of the Kenko Teleplus 1.4X HD DGX can be found in UK for £149.
The 20mm extension ring II is £297 and the C815-Z+1.4 Zoom gear is £218. Note this is in addition to the 30mm extension required for the 8-15.
With a total cost of £664 you are able to obtain the entire set up.
The rig looks identical to the fisheye except is a bit longer. You have a choice of 140mm glass dome or 4.33″ acrylic dome see previous article.
Additional extension ring on otherwise identical rig
With the rig assembled I made my way to the pool with the local diving club.
Pool Session
The 8-15mm with teleconverter was my first pool session with the A1 on the 3rd of February I was very much looking forward to this but at the same time I had not practiced with the A1 underwater previously and did not have my new test props. I think the images that follow will give a good idea anyway.
15mm Tests
At 15mm (zoom position somewhere between 10 and 11 mm on the lens) the image is excellent quality in the centre and I find very difficult to tell this apart from the lens without TC except for the color rendering. I believe the Kenko takes a bit away from the Canon original color rendering.
Peter at 15mm f/11Dad and Son 15mm f/8Diver girl f/11
At close range you get the usual depth of field issues depending on where you focus but this is not a teleconverter issue.
CFWA 15mm f/8Peter and croc
For comparison a 15mm image without TC.
VideoDiver
Zooming In
Obviously what is interesting it that you can zoom in here a set of shots at 16, 18, 21 mm.
16mm f/818mm f/821mm f/8
Finishing up with the required selfie.
21mm f/8
Conclusion
I enjoyed the teleconverter with the Canon 8-15mm and in my opinion in the overlapping focal length this set up provides better image quality of the WWL-1. I shot for most at f/8 as I was not very close and this actually shows the TC does not really degrade the image much.
You need to ask yourself when you will need 124 to 175 degrees diagonal and the answer is close up shots of mantas and whalesharks where a fisheye may be too much and 130 degrees may be too little. The set up also works if you want to do close up work and zoom in however I reserve the right to assess more in detail using my new in water props when I have some time.
Since the very first release I was told by Nauticam that the WWL-1 had been tested on Sony full frame with the 28mm f/2 lens and since then more lenses have been added to the compatibility list and the WWL-1 itself has had a redesign called WWL-1B, this lens has an integrated float collar and I do not know if there is any difference in the optics but I assume there is none.
Nauticam WWL-1B
Nauticam has since released a number of other water contact optics with dry mount and today you have a choice of at least 3 flavours for your Sony full frame camera that provide the 130 degrees diagonal field of view.
Model
Price (€)
Weight (kg)
Diameter (mm)
Depth (mm)
Max Filter size (mm)
WWL-1
1424
1.35
156
97
52
WACP-C
2930
2.24
170
145.5
72
WACP-1
4604
3.90
194
176
82
Summary Table Nauticam 0.36x Water Contact Optics
The three lenses provide the same field of view but they are different in size and mount. A useful way to see is that as the lens physical size grows you require a larger underwater optic.
The Sony E-Mount is still the only full frame format compatible with the WWL-1 in virtue of some really small and compact lenses. As you can see from the table above the WWL-1 rear element is large enough for 28mm lenses that have a maximum filter size of 52mm.
Two E-mount full frame lenses the 28/2mm prime and the 28-60mm zoom are compatible with the WWL-1.
As you move towards the WACP-C you can also use the 28-70mm lens which is one of the worst kit lenses on the market but will give you a longer tele end and finally the WACP-1 gives access to the Tamron 28-75mm and Sigma 24-70mm two lenses that have much higher quality than the smaller Sony lenses but have some restriction in terms of zoom range.
Underwater Performance Context
There are quite long discussions about which water contact optic to get for your Sony full frame once you have the 28-60mm zoom and some comparison in terms of sharpness.
In simple terms you can think of the following equation:
Underwater Performance = Land performance X Port Factor
Port Factor is always less than 1 which means a lens will never do in water as well than it does on land. Looking at my analysis of the 28-60mm corroborated by other test you know before buying any water contact lens that the lens has its own limitations and no matter how good is the port performance will only go down. However this may still be a better option compared to a standard dome port.
I do not have access (yet) to the other two water contact optics however I have a good idea of how the WWL-1 perform and how the Sony 28-60mm performs topside. If you want a refresh look at this article.
To understand how a water contact optic works you can go back all the way to the Inon UWL-100.
The idea of this lens designed for compact cameras is to demagnify the camera master lens to enlarge the field of view. You could then get an optional dome that will enable the lens to expand the underwater field of view from 100 to 131 degrees.
Back in 2015 I compared the Inon UWL-H100 with dome with the WWL-1 and concluded that the WWL-1 was giving better results when used on the same camera. It is now time to see if the WWL-1 can be used also on a full frame system.
Sony A1 WWL-1 Rig
The WWL-1 requires the flat port 45 to be used on a Sony full frame underwater housing. The lens will be attached using the same bayonet adapter that has been available for several years now.
Nauticam Bayonet Mount for WWL-1
I have removed the focus knob from the port as I found it inconvenient. The focus knob may be useful with the flat port but for the WWL-1 that is afocal is definitely not required.
WWL-1 topside view
Once you add the flat port the overall length is very much the same of the WACP-C but this will require an extension ring resulting in overall 30mm additional length.
Overall the rig is very similar in weight to the Canon 8-15mm with the Acrylic Dome Port 5.5″.
WWL-1 front side view
Pool Tests
With the rig assembled I went for a pool session with the objective of finding out what was the overall performance of the system.
What follows are a series of test shots of divers.
David f/8Kid f/8f/11 side shot
WWL-1 selfie 28mmDiver f/10
In general I found the lens to be sharper in the centre at f/8 but closing down to f/11 was required if there was something in the corners.
Edge Sharpness
I was intrigued by a number of discussions on edge sharpness and after several exchanges with Shane Smith he was clear that the lens needs to be stopped down to f/11 for best results.
After the session in the pool I would agree with Shane however I was curious if this was an issue of the WWL-1 or the 28-60mm lens itself.
This image quite simple has something at the edges and has focus in the centre at f/8.
Closeup f/8
You will notice that the part of the frame closer to the camera is fairly blurry.
So I did another experiment placing the slate on the edge.
Fuzzy f/8
The edges were quite fuzzy. I wanted to exclude this was an issue of depth of field so I focussed right on the corner.
f/8 focus on corner
This is the resulting image and is still soft on the edge.
fuzzy f8 focus
I then took the same shot at f/11 with focus on centre.
Closeup f/11
The image at the edges is better. Then moved the slate to the edge.
edge f/11
The image improved overall regardless of the focus point indicating this is not a depth of field issue but some other defect of the lens, most likely as the lens meridional and sagittal resolution are different we have an example of astigmatism.
Edge 100% crop f/11Blurry f/8 edge focussed on edge
The sharpness improves closing down the lens regardless of where the lens is focussing consistent to the MTF charts.
Looking back at land test shots we can see something very similar.
Edge at f/11 topsideEdge at f/8 top side
In conclusion it is not about the WWL-1 but about the lens itself.
Comparison to Rectilinear lenses
While the WWL-1 can offer a diagonal feld of view of 130 degrees the image is distorted and the lens can only offer 107 degrees horizontally and 70 vertically. Is like saying that the horizontal field of view is similar to a 13mm rectilinear lens while the vertical is is more like 17mm. A fair comparison is probably a 14mm rectilinear lens but as the WWL-1 is a fisheye like optic a direct comparison is not entirely possible. In my opinion as the image is distorted is more appropriate to compare the WWL-1 with a fisheye with teleconverter and when I look at what the canon 8-15mm with kenko 1.4 tc can produce for me the results are very similar, I would say the Canon has in fact an edge however the field of view are not comparable except when the WWL-1 is at the widest and the canon with the tc at the maximum zoom. I would go as far as to say that the canon + TC at f/8 is as good as the WWL-1 at f/11.
Canon 8-15mm with TC at 21mm f/8
Conclusion
If you have the WWL-1 from your previous rig it makes absolutely sense to get the Sony 28-60mm and flat port. This combination will give you decent (but not sensational) shots and work very well for 4K video at reduced resolution. I do not believe that this lens can resolve the full 50 or 60 megapixels of the A1 or A7R4 or A7R5 even topside.
If you are starting from scratch I would recommend to think careful at your intended use case. If you want angles wider than 130 degrees and already have the Canon 8-15mm you may want to check the kenko telecovenverter before you buy a new port as all you need is a 20mm extension ring and a zoom gear.
If you really like the field of view range of 69-130 degrees you need to consider which water contact optic you need.
I am still looking for a test WACP-C but until then my general guidance would be to consider simply if you prefer a dry or wet mount.
A dry mount has the benefit of being ready to go as you hit the water, without the need to remove bubbles between the wet lens and the port. As photographer a dry mount may be the best way forward.
If you intend to use your camera for video and insert filters between the lens and the flat port or you require the lens to be removed in water then go for the WWL-1.
Rigorous comparisons between WACP-C and WWL-1 are not yet available but the first indications are that the difference in image quality is very small therefore I would not loose my sleep there and look more at overall ergonomics.
The final consideration is should you get the WACP-1 instead? Based on my assessment of the Sony 28-60mm I would think this is not particularly wise even if this choice is very popular. Personally I always believe that the master lens needs to be good enough to justify the cost of the water optic so I would like to see how the Tamron 28-75mm performs however no test images are available so I am not in a position to conclude.
In my case having seen what the Sony 28-60mm lens can do I am not planning to invest in a WACP-C but I would be very interested in testing one.
The WWL-1 gets my approval also on full frame but it is not going to give me the same resolution than the Canon 8-15mm or the Sony 90mm macro will give. I look forward to testing some rectilinear lenses to see how those compare and this will happen in a week from now so stay tuned.
Costs to get one for your Sony full frame excluding lens:
WWL-1B €1,424
Bayonet adapter €102
N100 45 flat port €494
Total €2,020 vs WACP-C + N100 Extension Ring 30 €3,333
Following from a previous article about not increasing bulk I have considered a few options for the Canon 8-15mm fisheye.
The 8-15mm is not a small lens and due to the different flange distance between Canon EF mount for DSLR (44mm) and Sony E-Mount (18mm) we have a chunky 35.5mm N100 to N120 adapter port that makes the whole set up not that compact.
Dome Options 140mm vs 4.33″
The Nauticam port chart recommends the 140mm glass fisheye dome for the 8.15mm, this port is 69mm radius and is made with anti reflective optical glass and weights 630 grams.
140mm Glass Dome on Scale
There is another dome from Nauticam the 4.33″ acrylic but this does not feature on the port chart for the Canon 8-15mm.
I did some calculations and this dome should require the same extension so I ordered one conscious that this would be lighter but not necessarily increase the underwater lift due to a reduced volume.
4.33″ dome weight
Although there is a difference of 362 grams the smaller volume will result in less buoyancy 348g lift vs 688g lift for the 140mm so overall the additional buoyancy is only 22 grams.
4.33″ vs 140mm
The primary benefit of this smaller dome is that it gets you closer this in turn means that things will look bigger and as consequence depth of field will drop. Depth of field depends on magnification and as you will get closer it will drop compared to other domes. So larger domes have more depth of field not because they are larger when you are at close range but simply because your camera focal plane is standing further back.
To give an idea this is a little miniature shot with the 140mm dome with the target touching the glass port.
140mm dome close up
This is the same target with the 4.33″ dome.
4.33 dome
Side by side shows the difference in magnification.
Left 4.33″ dome right 140mm dome
If we look at the same detail we can see that the 140mm dome image detail is less blurred.
4’33 dome vs 140mm dome
We are on land here there is no water involved and the 140mm image is sharper at the edge simply because it is smaller.
As depth of field must be compared at equal magnification we can also bust another myth of larger domes vs smaller domes there is no increased depth of field you are just standing further back if you compared the front of the port instead of the focal plane.
Building the Rig
The extension required is still 30mm as for the 140mm dome,
Acrylic dome profile
The overall size of this dome means it is flush with the extension ring.
Port details the lens hood must be removed
This is the overall rig with the amount of flotation in this image it is around 600 grams negative in fresh water.
4.33 rig
Now that we know what to expect is time to get in the pool and take some shots. I got some miniature aquarium fixtures to simulate a close focus wide angle situation.
Pool Session
Once in water I set up my artificial reef and got shooting.
I was at the point of touching the props so I had to stand back a little. As expected the issue is depth of field.
Shots at f/11
For starter we try to get as close as possible and focus in line with the chick.
Fisheye f/11 Focus on back
Due to the extreme magnification the front details are quite soft. So from here I start moving backwards a little.
Still focussed on the chick the sharpness improves due to reduced magnification this is a simulation of a larger dome.
Fisheye f/11 Focus on chick
There still is severe blurring of the front detail at f/11. However due to the increased depth of field that the dome brings behind the focus point the rest looks pretty good.
Focussing on the middle of the frame at f/11 results in blurry details for the features in the front of the frame but much less blurry than before and the chick is still relatively sharp.
fisheye f/11 Focus on edge front
Focussing on the pink reef detail results in a better overall result in a counterintuitive way.
Shots at f/16
Stopping down the lens results in increased depth of field so more of the image is in focus however the overall sharpness drops. This is a good place to be if you don’t want to be too sophisticated with the choice of focus point and you are close.
You can get closer but the front detail is still a bit soft but acceptable.
Fisheye f/16 Focus on back
If you move your focus point a bit further in front the situation improves.
fisheye f/16 Focus on middle
At this point I decided to get into the picture with a white balance slate.
Fisheye f/16 Focus on back diver
Although the front is quite blurry due to the extreme close range the result is acceptable for the non pixel peeper.
Shots at f/22
We are here hitting diffraction limit and the image looses sharpness but we are after depth of field so be it.
fisheye f/22 Focus on duck
Now the depth of field is there although the detail in the centre is less sharp.
fisheye f/22 Focus on middle
Moving the focus point makes the image a bit better.
Time to insert the diver in the frame.
Fisheye f/22 Focus on back diver
Overall ok not amazing consider the dome is on the parts.
Conclusion
The small acrylic dome does quite well at close range, the limitations come from the depth of field and not from the water and the dome increases the depth of field behind the focus point. This is something that you can use to your advantage if you remember when you are in open water.
For shots that are further away you can shoot at f/11 and get excellent IQ there is no need to stop down further to improve the edges. Consider however that f/8 may be just too wide on full frame and introduce additional aberrations regardless of depth of field.
VideoDiver at f/11
Some numbers:
Nauticam 140mm Glass dome: £911
Nauticam 4.33″ Acrylic dome: £550
Price difference £361 or 40% however bear in mind that the primary benefit of the glass dome is to resist reflections and ghosting due to the coating and the fact you can keep the 8-15mm hood on.