Category Archives: Panasonic GH5

Panasonic GH5 Demystifying Movie recording settings


There are a lot of videos on YouTube that suggest that there is not much difference among the various recording settings of the GH5 for UHD.

To recap we have 4 settings for UHD (I will refer to PAL system because it is easier but all applies equally to 24p, the 30p/60p format will be the same with worse results)

  1. 100 Mbps 420 8 Bits Long GOP 25p
  2. 150 Mbps 420 8 Bits Long GOP 50p
  3. 150 Mbps 422 10 Bits Long GOP 25p
  4. 400 Mbps 422 10 Bits All-Intra 25p

The difference between Long GOP and All Intra is that in the Long GOP what is encoded is a group of pictures (GOP) and not separate individual pictures. In this article I will use ProRes as a proxy to AVC-Intra as, in the GH5 implementation, they have very similar logic and performance you can find some posts on the internet of people trying to discern the two but there really is not difference as essentially this is just image compression. 

Within a Group of Pictures there are different type of frames:

  • I (Intra coded) frames containing a full picture
  • P (Predictive coded) frames containing  motion interpolated picture based on a prediction from previous frames
  • B (bi-predictive coded) frames containing a prediction from previous or future frames

It is important to note that frames are not stored sequentially in a GOP and therefore the GOP needs to be decoded and the frames reordered to be played, this requires processing power.

The reason why H264 is very efficient is that within a group of picture there is only one full frame and the rest are predictions clearly if the prediction algorithm is accurate the level of perceived quality of long GOP is very high and similar to All-Intra clips.

This is the reason why comparing All Intra and Long Gop using static scenes or scenes with repetitive movement that can be predicted very accurately by the codec is a fundamental error.

Incorrect example here:

The scene is composed of static predictable objects with no motion and after YouTube compression the (wrong) conclusion is that there is no absolute difference between the codecs. Instead what this shows is the effectiveness of Long GOP when the prediction is accurate which is exactly the point of the codec plus the fact that YouTube flattens differences due to heavy compression and use of Long GOP.

Another example is a bit better as it uses a fountain which is a good representation of unpredictable motion

In the 300% crop you can see how All_Intra performs better than Long GOP in terms of prediction despite the YouTube compression, but generally those tests are unreliable if you see the last section of the video where there is a semi-static scene you cannot really take the three examples apart.

So why is that and is there any point selecting different settings on your Panasonic GH5?

In order to understand the workings we need to dig deeper into the structure of the GOP but before doing so let’s evaluate the All-Intra codec.

AVC All-Intra explanation

This codec records at 400 Mbps so with 25 fps this means circa 16 Mbits per frame or  1.9 MB per frame and there is no motion interpolation so each frame is independent from the others. The implementation of All-Intra of the GH5 does not make use of CABAC entropy encoding as Panasonic does not believe this is beneficial at higher bit-rates making this AVC-Intra implementation very close to ProRes as both are based on Discrete Cosine Transform.

If you consider a Jpeg image of your 3840×2160 frame on the GH5 you see that it stores around 4.8 MB per image because there is no chroma sub-sampling so if you wanted to have exactly the same result you would need to use ProRes 4444 to get a comparable quality (this not even taking into account that Jpeg are 8 bits images).

Video uses chroma sub-sampling so only part of the frame contain colours at a given time. Apple in their ProRes white paper declare that both ProRes 422 and 422 HQ are adequate to process 10 bit colour depth and 422 sub-sampling however they show some quality differences and different headroom for editing. If you count 50% for 4.2:0 sub-sampling and 67% for 422 you get around 2.34 MB and 3.5 MB frame sizes that correspond to ProRes 422 and ProRes 422 HQ individual frame sizes.

In simple terms All Intra 400 Mbps would fall short of Apple recommended bit-rate for 422 10 bit colour for circa 92 Mbps is like saying you are missing 0.44 MB from your ProRes 422 frame and 1.6 MB from ProRes 422 HQ and you have 0.3 MB more than ProRes LT however I do not have the full technical details of ProRes to evaluate directly.

The real benefit of such codec is that it can be processed with modest hardware without conversion as the AVC Intra codec is edit ready and each frame is captured individually without any motion artefacts and therefore the computer does not have to do a great deal of work to decode and render the clips.

In order to record All-Intra in your memory card you need a V60 or higher specs card which in terms of $ per GB costs you more than an SSD drive however you no longer need a recorder.

Coming back to the other recording quality option we still need to evaluate how the various long GOP codecs compare relative to each other.

In order to fully understand a codec we need to decompose the GOP into the individual frames and evaluate the information recorded. If you look on Wikipedia it will tell you that P frames are approximately half the size of an I frame and B frame are 25%. I have analysed the Panasonic GH5 clips using ffprobe a component of ffmpeg that tells you what is exactly in each frame to see if this explains some of the people claims that there is no difference between the settings.

Link to Panasonic documentation


100 Mbps 420 8 Bits Long Gop 25p Deep Dive

An analysis with ffprobe shows a GOP structure with N=12 and M=3 where N is the length in frames of the group of pictures and M is the distance between I or P frames.

So each Group of Picture is made like this

IBBPBBPBBPBBP before it repeats again.

A size analysis shows that B frames are in average 14% of the I frame and P frames are around 44% of the I frame.

Size 1648326 247334 237891 728777 231947 228048 721242 228347 227544 713771 236866 232148
Ratio to I frame 100% 15.01% 14.43% 44.21% 14.07% 13.84% 43.76% 13.85% 13.80% 43.30% 14.37% 14.08%

With an average video bit-rate of 94 Mbps each GOP has 45.3 Mbps which means an I Frame has around 13.1 Mbits or 1.57 MB per frame and an equivalent All-Intra bit-rate of approximately 328 Mbps however this codec is using CABAC entropy encoding that Panasonic states is 20-30% more efficient than CAVLC used in All-Intra so net of motion artefacts this codec is pretty strong.

150 Mbps 420 8 Bits Long GOP 50p Deep Dive

An analysis with ffprobe shows a GOP structure with N=24 and M=3 where N is the length in frames of the group of pictures and M is the distance between I or P frames.

So each Group of Pictures is made like this

IBBPBBPBBPBBPBBPBBPBBPBB before it repeats again.

A size analysis shows that B frames are in average 13.4% of the I frame and P frames are around 41% of the I frame. With an average bit-rate of 142.7 Mbps each GOP has 68.5 Mbits which means an I Frame has around 11.3 Mbits or 1.35 MB per frame and an equivalent all Intra bit-rate of approximately 566 Mbps. Again this uses CABAC entropy encoding so the equivalent All-Intra is higher.

One very important aspect of the 150 Mbps codec is that as the GOP is double the length of the single frame rate 100 Mbps codec there are the same number of key frames per second and therefore it is NOT true that this codec is better at predicting motion. In fact it is exactly the same so if you had acquired a 100 Mbps codec at 25 fps and then slowed down the footage to half speed asking your editor to interpolate intermediate frames it would come to the same result although with some more processing required.

150Mbps 422 10 Bits Long Gop 25 fps

An analysis with ffprobe shows a GOP structure with N=12 and M=1 which means this codec does not use B frames but just I and P frames so the GOP structure is as follows:

IPPPPPPPPPPP before it repeats again.

A size analysis shows that P frames are on average 53% of I frames so this codec is in fact less compressed however this has also some consequences.

With an average bitrate of 150 Mbps each GOP has 72 Mbits which means an I Frame has around 10.5 Mbits or 1.25 MB per frame and an equivalent all Intra bitrate of approximately 262 Mbps. So this codec in terms of compression efficiency this is actually the worst and this is due to the lack of B frames.

We can only think that the Panasonic GH5 processing is not strong enough to capture 10 bit and then write 422 Long GOP with IPB structure.

Codec Ranking for Static Image Quality UHD

So in terms of absolute image quality and not taking into account other factors the Panasonic GH5 Movie recording settings ranked by codec quality are as follows:

  1. 400 Mbps 422 10 Bit All intra 25 fps (1.9 MB per frame)
  2. 100 Mbps 420 8 Bit Long Gop 25 fps (1.57 MB per frame)
  3. 150 Mbps 420 8 Bit Long Gop 50 fps (1.35 MB per frame)
  4. 150 Mbps 422 10 Bit Long Gop 25 fps (1.25 MB per frame)

The 100 Mbps  and 400 Mbps codec are marginally different (21% larger frame size) with the 422 10 Bits long GOP really far away.


If you want to record your footage to the internal memory card you are really left with two choices:

  1. Use the 100 Mbps Long Gop codec it is very efficient in the compression and the perceived quality is very good. It does however require you to convert to ProRes or similar during editing if you don’t want to overload your computer as the codec is really heavy on H264 features. You need to get the exposure and white balance right in camera as the clips may not withstand extensive corrections. There is a risk with footage with a lot of motion of some errors in motion interpolation that can generate artefacts.
  2. Buy a V60 or V90 memory card and use 400 All intra at single frame rate. This will give you edit ready footage of higher quality without motion artefacts, You still need to get exposure and white balance right in camera as the headroom is not so large to allow extensive corrections. The bit-rate and frame size is not sufficient to really give you all the benefits of 422 sampling and 10 bit colour but it will be a good stepping stone to produce good quality rec709 420 8 bit footage.

Generally there appears to be no benefit using the internal 422 10 Bit codec nor the 420 8 bit double frame rate due to the limitations of the GOP structure, here Panasonic has created a few options that to be honest appear more a marketing effort than anything else.

There may be some use to the 150 Mbps double frame rate if you intend to slow down the footage after the conversion to ProRes or similar but the extremely long GOP does not make this codec particularly robust to scenes with a lot of motion and in any case not more robust than the 100 Mbps codec.

A final thought if you are interested in 10 bit colour is that the FHD All Intra 200 Mbps codec has enough quality and headroom to allow manipulation. This is in fact the only codec that has bit-rate higher than ProRes HQ at least at 24 and 25 fps so if you want to check the real range of colours and dynamic range the camera is capable of you should try this codec.

Note: I have removed some comments on ProRes and external recorders as there are plenty of people that believe that the intra codec does better than ProRes HQ on the Atomos


Panasonic GH5 settings for underwater video

In the previous post I described the HDR settings especially relevant if you have an external recorder. However there is quite a lot of discussion if it is worth shooting HDR underwater video with the Panasonic GH5 at all. This follows the discussions about using VLOG L underwater versus studio production: many people that start using VLOG L revert to a more normal setting something using standard profiles and not even Cine profiles because the workflow is just too much work.

In general there are 3 characteristics that are important to underwater footage but more in general to any footage: colour , contrast and noise. This is the reason why when you look at DXOMark you have some measures of those 3 characteristics.


What DxOMark is telling us is that looking at a RAW image produced from the GH5 the colour depth is at best 23.9 bits, the dynamic range is at best 13 Evs and the Low-light ISO that still gives some decent colour depth and dynamic range is 807 ISO.

Let’s have some interpretation of those measures colour depth of 23.9 bits means 15.6 millions colours, this is actually less than true colour of an sRGB display. Considering the RGB scale the 23.9 bits per colour really mean 8 bit colour. OK so why does the camera have a 10 bit colour (equivalent to 30 bits per pixel no camera reaches that even full frame) option at all? We will talk about it in a minute…

Dynamic range for a RAW image is 13 Evs however Panasonic says VLOG L offers 12 stops compared to 10 stops of professional SDR footage. Now 12 stops require a display with a contrast ratio of 4000:1 which is beyond all commercial computer monitor and in the range of HDR devices. The new VESA DisplayHDR standard HDR600 is a minimum requirement to display this level of contrast ratio.

Finally the Low-light ISO of 807 (corresponding to 1600 on your GH5 as ISO values are always incorrect and geared towards higher values for marketing reasons) means that unless you are at the surface pretty soon there won’t be any colour or dynamic range to show (low-light ISO requires 18 bit colour depth 9 Ev Dynamic range and 30 dB SNR).


The GH5s will give you 1.5 stops more of low-light performance and therefore your footage will look good until ISO 2400 or ISO 4800 looking at the camera settings which is quite a bump.

OK now coming to the main point of the post having seen those limitations why would I bother shooting in VLOG or HLOG?

First consideration: Noise

As we have seen both dynamic range and colour depth drop considerably when ISO goes up. In short unless you have abundance of natural light or you are shooting macro with a lot of artificial light is unlikely you will see any benefit shooting VLOG or HLG.

Considering that compression brings additional noise here we see why shooting with an external recorder at higher bitrate really helps fighting noise even if you don’t shoot log because you reduce the compression artifacts. If you don’t have a recorder consider setting a max ISO limit quite low around 1600 on your GH5 or you will see a lot of grain.

Second consideration: color depth

If the camera cannot even resolve 10 bits per pixel RGB why would you shoot 10 bits? When you shoot VLOG or HLG you are not operating in the REC709 colour space which is limited to 8 bits so it is possible that the colour that the sensor is capturing are not all the 16.7 millions of the RGB palette but some of them are outside in the Dci-P3 or even REC.2020 colour space. Clearly if you do not have a 10 bit screen (and almost all computer screens are 8 bits) or 8 bits with FRC to simulate 10 bits, this is a total waste of time and you won’t see those colours and nobody on a computer working in sRGB will see them either. So unless you have a proper screen to watch your clips there is no point working in 10 bits. When it comes to grading again if you can’t display those colours it won’t be possible to do your work properly so don’t waste your time and shoot in 8 bits.

You now understand why you can’t see any difference in all those youtube comparison that by the way have been encoded 8 bits!

A lot of people records in VLOG 10 bit to then produce in REC709 that has 8 bit colour and the reason is that they have proper grading monitors to see what they are doing.

Just to give you an example laptops with exception of some recent MacBook Pro and others like the Dell XPS can’t display 10 bit colour. An iMac displays 10 bit colour and some screens that support DCI-P3 also are capable any other RGB screen won’t work.

Conclusion don’t waste your time with 10 bit if you don’t have a decent screen and if you only produce for youtube.

Third consideration: Dynamic range

VLOG and HLG start at base ISO 400 (that really is 200) and this is where you have your 12 stops. Once you get to ISO 1600 (nominal 3200 on your GH5) you still have 9.5 stops but the colours are gone. Generally it does make sense to shoot LOG however the issue may well be that your editing display is not HDR600 and therefore you can’t really see what you are shooting accurately. Having a screen that can correctly display HDR is even harder than finding one that can display 10 bit colours. What you need to consider though that unless you are capturing a sunburst or a backlit scene or you are shooting the surface you will not have more than 10 stops in your scene anyway.


The settings you can shoot really depend on your editing and display devices.

If you have a laptop or just an 8 bit computer screen and no external recorder you can shoot at 100 mbps 8 bit colour with the picture profile of your choice, standard, natural, cine like whatever you like as you won’t be able to tell the difference at any point in the process from any other formats 10 bits logs etc.

If you have a DCI-P3 display or better for editing shoot 10 bit colour. Examples are iMac and MacBook Pro or some Philips or Acer screens on the market.

If you have an HDR display for editing and an HDR Tv set shoot HLG.

If you have an external recorder shoot in PRORES HQ (as the GH5 does not support camera RAW). Some of those recorders like the Atomos Shogun Inferno support HDR and can also be used for editing with some adapters so shoot in HLG to get the best results.

Generally VLOG L requires a lot of work and is best suited to studio production so if you don’t have a good grading set up don’t waste your time with it.

If you are one of those shooters that after a lot of trial and error ended up shooting 8 bits colour because you don’t have a recorder or shooting natural or cine-like because you don’t have a proper grading HDR monitor now you know why you are doing what you are doing….

Setting up your GH5 for HLG HDR capture

We got our GH5 ready for HDR capture in the previous post so how do we make the most of it?

If you have an external recorder or monitor that supports HDR it is easy! Also if you do you probably have a fair bit of money and you are not reading this blog…

Currently Atomos recorders that can be housed all support HDR including HLG

Nauticam Atomos Flame

The Nauticam Atomos Flame available at list price of $3,650 will house the Shogun Inferno, Shogun Flame, Ninja Inferno and Ninja Flame

On the Atomos website you can see that for the GH5 the products recommended are the Ninja and Shogun Inferno there first is priced at $995 and the second at $1,295.

There is a difference of $300 between the Shogun  and the Ninja  however the Shogun  provides an SDI video port that may turn out quite useful in grading phase. So if you got to the point of spending $3,650 for the housing I would definitely invest the extra $300 needed for the Shogun Inferno.

Once you get a recorder you can set up the GH5 to output 4Kp50/60 at 10 bit and be happy. The HDR screen of the Atomos device will provide the real time monitoring you need to expose footage properly in HLG. It is not my intention to start a debate about log vs HLG there is plenty of material out there.

A very good video is here

If you don’t have a recorder you are left to the GH5 screen that does not support HDR so how are you going to expose correctly? You have a couple of tools available.

The first one is Zebra Patterns that can be accessed in the Monitor subsection of the menu.

There is a great tutorial on YouTube

Now if you are working in HLG you will notice that the maximum value that can be set is 95% this is because luminance in HLG is limited to 64-940.

If you look on ITU website you can see that white ranges between 69 and 87 in HLG so using Zebra we can still attempt at exposing properly without an HDR monitor.

If you do have a reference white balance card you should set the Zebra to 75% as this is the reference for white if you are in the field without a reference your value should be set to max 90% to ensure you don’t blow highlights. Now you will find some website that tell you 95% is fine too but you do want to leave a bit of headroom. If you want you can set Zebra 1 to 75% and Zebra 2 to 95% so you cover all eventualities.

So once you have set the Zebra the next step is to decide if you want to use HLG View Assist or not. Here you have three options:

  1. Off
  2. Mode 1
  3. Mode 2

Off leaves the display in REC709

Mode 1 gives priority to background areas for example the sky

Mode 2 gives priority to the main subject

The 3 modes are really a progression of brightness, when Off the image looks completely desaturated and Log like. In Mode 1 the image appears to have a preference to show shadows in Mode 2 the image looks the brighter and the most punchy making it easy to work on the foreground but crashes the black and shadows quite a bit.

No matter what you select the Zebra value remain unchanged.

The final setting that can be useful is the Waveform monitor which is accessible in the creative video menu. As the Zebra this gives you a real time display of the image within a diagram that on the horizontal axis represent the image left to right and on the vertical has the signal. This is practically a spacial representation of your image and has the same intensity of the Zebra from 0 to 100. So anything too dark on the bottom won’t be visible and things above max will be clipped.

There are several tutorials available on YouTube

So in essence you could try to expose correctly using Zebra and waveform monitors on the GH5 LCD display but let’s face it the screen is tiny and underwater you won’t be really able to use it effectively. If you have an external monitor or recorder this becomes more useful and something to effectively try.

If you are using the camera meter to expose remember that the GH5 as most cameras has only three settings for metering: multi area, center weighted and spot those influence how the camera calculates the average exposure, this is true also if you use manual mode the reading on the meter will change depending on the metering mode. However for what we have said here if your objective is simply not to clip highlights you have a long way to go before reaching 90% IRE with HLG.

In short you have three options to set exposure on your GH5:

1. Super lazy option trust your camera meter as this was a still image, most likely you will be exposing to the right and without further checks there is a chance to have dark area or clipped highlights.

2. Use Zebra and manual exposure in combination with the camera meter to ensure you stay within safe limits.

3. Use waveform monitor and completely ignore the other parameters as this gives you full control of what you are shooting and removes any dependency on having or not an HDR monitor

As a final note it is important to remember that performing a white balance adjustment is essential in order to expose correctly it is not just to get the colour right as the IRE values on what is white actually change and the camera makes assumptions on what is white to calculate the rest. This is especially true for environment in difficult light conditions.

Getting yourself familiar with waveform monitoring is essential for editing as majority of people will not have the possibility to grade on an HDR screen. In the next post I will explain how to get the lowest possible cost HDR screen that supports HLG.