Tag Archives: Photography

Travelling light – Part II on the field

Disclaimer: there are many USB power banks on sale however most of them do not declare the maximum output current and therefore you cannot be sure that it will work in all situations I describe. The equipment I use does work and is proven by my daily experience, the suggestions are not prescriptive but if you choose your own parts you do do at your own risk

It has been some time since my post on chargers and recharge facilities. During the pandemic I have done a considerable amount of land based photography including wildlife, landscape and astrophotography so I have had the opportunity to develop the concept of portability further on the field. So I wanted to share my experience with you all as some of the findings are beneficial in every day situation.

Charging your camera battery

Today some cameras can charge the battery in camera using USB. In almost all cases the camera needs to be turned off to allow charging, as a complete recharge of your battery can take a few hours I never use this method. I always rely on spare batteries typically 3 and a dual battery charger that can be powered using USB. I use Newmova they are cheap and cheerful for both my Panasonic and Olympus cameras.

Newmowa Dual USB Charger for Olympus BLH-1 and OM-D EM1 Mark II, OM-D E-M1X Camera £9.99

Newmowa Dual USB Charger for Panasonic DMW-BLF19 and Panasonic DMC-GH3,DMC-GH4 DMC-GH5, DC-GH5S(DMW-BLF19 Dual USB Charger) £9.99

With 3 batteries you can have two in the charger if needed and one in the camera which means uninterrupted shooting for a long period of time depending on your use.

Battery Grips

I also use battery grips in particular for my Olympus camera. Battery grip provide the most benefit when you are not wanting to interrupt shooting while swapping batteries. I usually set the camera to use the grip battery first and the camera as back up which means you can then insert another battery in the grip and keep shooting. I do not recommend using a battery grip as a sole source of power as at the end you can can go through 2 batteries relatively fast if you use quick burst shooting. The other dis-benefit of the grip is the one battery is always locked inside the camera so you need to increase your total battery stock to 4 if you use a dual charger. The grip is very useful to shoot verticals and provide weather sealing but overall is not my favourite option and I only use it for specific session on my Olympus camera because I only have 2 batteries.

There are some working 3rd party battery grip like this one that function AS LONG AS YOU USE ORIGINAL OEM BATTERIES.

Neewer Battery Grip Compatible with Panasonic Lumix G9 Camera Replacement for DMW-BGG9 with Shutter Release Focus Point Control Joystick £59.99

I have not seen versions for Olympus camera and the original battery grip is expensive. I got mine second hand for a good price.

Again if you only have two batteries or you want to rotate 4 batteries a battery grip is a good option if you don’t mind the extra weight.

Power Banks

I use a relatively simple USB power bank as I do not have PD capable cameras. This power bank has a decent capacity but more importantly it can output 4.5A using two outlets.

RAVPower Portable Chargers 16750 16750mAh External Battery Pack 4.5A Dual USB Output £24.99 

This power bank has also a light included very useful for your night photography. You can also use it to charge your phone but with two outlets means you can power two dual USB chargers and effectively charge 4 batteries twice until it runs out (typical battery less than 2000 mAh).

This power bank can also be used as constant power supply for cameras that take a dummy battery and do not support powering through USB.

DMW-DCC12 USB Power Cable kit DMW-DCC12 DC Coupler Dmw-Blf19 Dummy Battery (BLF-19 Battery Replacement) Compatible with PANASONIC DMC-GH3 DMC-GH4 DMC-GH3K DMC-GH4K DC-GH5 GH9 and more Digital Cameras £22.99

Using the power bank with this fake battery kit means I can run my GH5 in video for days (8.72x batteries equivalent charge).

IT IS VERY IMPORTANT THAT YOUR POWER BANK OUTPUTS MORE THAN 3A OTHERWISE IF YOU USE MECHANICAL SHUTTER THE CAMERA MAY GO IN SHUTTER VIBRATION AND SUFFER PERMANENT DAMAGE

Some well know power bank from respectable brands like anker and even rawpower themselves only outputs 3A current total so when the mechanical shutter is used and the camera draws more current you run into issue. This also happens when you set a custom white balance and the camera triggers the mechanical shutter. So if you have such power bank you are limited and hence I do not recommend them.

If you also use flash you can use the same chargers I already linked in the previous article

Prices have dropped to £7.99 for the micro USB and £9.99 for the dual USB C and micro USB input. Note that despite the misleading description the two chargers are identical except one has micro USB and the other also USB-C. The USB-C version is slightly bigger (70x90x23 mm USB version vs 97x114x34mm USB C). The USB C version has a stronger output for AAA batteries that I do not use and it does not charge faster standard AA so don’t be mislead.

EBL 40Min Smart Fast USB Battery Charger for AA AAA Ni-MH Rechargeable Batteries
EBL 2-hour Super fast AA AAA Rechargeable Battery Charger with Battery Intelligent Auto-detection Tech for 1-4 NiMH Rechargeable Batteries

Dew Heaters

Another useful accessory if you do astrophotography in humid or cold environment is a lens warmer. There are two versions I recommend the one with the temperature regulator as the strip gets to 50 C and this can increase dark current noise in your shots.

COOWOO Lens Heater Warmer Dew Heater with Temperature Regulator Strip for Ice Fog Universal Camera Telescopic Bottle Heating (Black)

Amazon.com links for my American followers

EBL 40Min Smart Fast USB Battery Charger for AA AAA Ni-MH Rechargeable Batteries

DMW-DCC12 USB Power Cable kit DMW-DCC12 DC Coupler Dmw-Blf19 Dummy Battery (BLF-19 Battery Replacement) Compatible with PANASONIC DMC-GH3 DMC-GH4 DMC-GH3K DMC-GH4K DC-GH5 GH9 and more Digital Cameras

Neewer Battery Grip for Panasonic G9

RavPower 16750 mAh 4.5A dual USB power bank

NewMowa Olympus dual charger

NewMowa Panasonic dual USB charger

COOWOO Lens Heater Warmer Dew Heater with Temperature Regulator Strip for Ice Fog Universal Camera Telescopic Bottle Heating (Black)

beyond underwater imaging

It is now almost one year since Covid-19 lockdown in UK and a bit more since my business travel has stopped. Next week I will getting my Covid-19 first vaccine jab but we do not yet have full clarity about the implications on leisure and business travel. The various countries are dealing with the pandemic with different degrees of speed and effectiveness and it is possible that some of the most exotic diving destinations will be on the allowed travel list later than western countries.

Many people have discovered local diving out of necessity and some have also done underwater photography in their bath, however for me this was not sufficient.

Since last year I formally joined a photography club and looked at expanding my interests. In 2020 as I have been staying at home I have taken the highest number of photos to date.

At beginning I thought: how can I reuse some of my camera lenses I use underwater on land? Mostly this was about macro in the garden. Slugs, bees and flowers were part of the first part of the journey.

Eye2Eye
the eye
B-Flight Mode
B-flight mode

I soon realised the skillset was similar but not identical and there were specific requirements to be fulfilled.

I then moved into abstract tried some portraits and more night photography. I needed to start investing in more lenses as I was getting more specialised and improving in the task.

V
V for…
CarnationFurPink
Furcarnation
Backlight
Backlit
Oil&Water
Oil & water
Home Sweet Home
Home Sweet home
San Francesco Portrait
San Francesco
Looking forward
Looking forward

I also started some bird photography in the garden using feeders to entice little birds. This proved challenging but I discovered I much more preferred predators and larger birds so I started going on walks locally to photography red kites. I already had a long lens so with a teleconverter started getting better at photographing birds in flight.

Il Nibbio Reale Wallpaper
Red Kite
Disrespectful Teen
Disrespectful teen

All of this has been done locally without the need to travel.

After a short summer break, where I got to do some diving re-discovering the beauty of Sorrento peninsula and the amazing diving on the coast, it was time to get back to England with the somewhat grim prospect of a very dire winter in full lockdown.

And then something happened thanks to the friends of the New City Photographic society I discovered an amazing location on my door step.

Woburn Abbey and deer park owned by the Duke of Bedford and spanning across the towns of Woburn and Ridgmont.

Cloudy Sunrise Woburn Abbey
Woburn Abbey on a cloudy day

I went there the first time in November and literally fell in love with the location. After many early morning rise and many pictures taken I decided it was time for a video project.

P1001104_DxO
Sika Stag Beauty

Deer are sufficiently large that are not too difficult to film compared to birds and are extremely rewarding as they tend to stare at you.

The winter season has been an opportunity also for late sunrise which meant not so early wake up calls to get there for the golden hour.

Sunrise Ruts
Sunrise ruts

Now that we are coming to the end of the full lockdown scheduled for March 29th I have decided to release a short film to remember what it was during this period and the magic moments I had the privilege to experience mostly on my own in the Woburn Deer Park.

The film will be released on my YouTube channel on Friday 26th of March at 8PM GMT. To make it easier to digest I will upload it in separate parts and if possible as a whole. YouTube is being very slow to process footage in the last months so I hope it will be all up next week.

I hope you will enjoy it. It is a total of 26 minutes of duration out of around 2 TB of video material collected in the months of January, February and March 2021. I will be putting posts on how it was shot in case you also want to expand your horizons…

Why You need 1.4 lenses on Micro Four thirds

This post is NOT about underwater imaging. With the lockdown most of us have started using their cameras in the garden to shoot bugs, or birds or family members or abstracts.

In my instagram on the side you can see some examples of what I have been up to.

Shooting underwater is typically done at small apertures because of underwater optics issues. It is rare to shoot wide angle wider than f/5.6 on a MFT body or F/11 on full frame.

On land everything changes and you want to have as much light as possible coming into your camera to maximise dynamic range, bring out colours and minimised noise. Aperture controls not just how much light hits the sensor but also depth of field or I should say depth of focus.

Depth of field at equal level of magnification (size of the subject relative to the frame) depends only on the aperture of the lens. It does not matter if the lens is short or long once the subject fill your frame it is the f/number that influences depth of field.

2.8/2/1.4 is the Magic Number

Typically in full frame terms f/2.8 was a good lens, and the reason is quite simple if you shoot a classic 50mm lens from 1.5 meters away you will have 15 cm or half a foot depth of field. This is ideal to keep things in focus but also provide some background separation as objects blur as they move away from the area in focus. If you had a faster lens more light would go in the frame however you risk that nothing is in focus, for example nose and eye in focus and maybe ears not in focus.

And this is why 2.8 has been the magic number for full frame photography. If we move to an APSC sensor this becomes 2 and on MFT the magic number is 1.4. So 1.4 on a 25mm lens on MFT is equivalent to 2.8 on 50mm on full frame.

-20200211-13.jpg
Street Photography Night scene at 1.4

1.4 also gives plenty of light to your sensor so when you want to do some street photography or filming on MFT you can keep your ISO very low.

Exposure Value

Every scene has a level of illumination given in LUX and your camera needs to be able to expose for it with the right focus, with the required motion blur and lowest noise.

The scene in the image above is shot at f/1.4 1/60 ISO 640 let’s calculate the Ev taking into account the reference value is f/1 1 second and ISO 100.

1.4 means 1 stop 1/60 means 5.9 stops and 640 means 2.67 stops. So in total we have 6.9 stops of light taken away from aperture and shutter and 2.67 stops added by ISO gain. Total of 4.22 Ev using the formula Lux = 2.5 2^Ev we get 47 Lux which is the level of illumination of your living room in the evening with artificial lights.

If you had a slower lens like for example 2.8 to cover the same scene you needed to shoot at ISO 2500 this would have increased the noise, reduced the dynamic range and the colors.

2.8 Zooms are for outdoor

There are a number of great lenses for MFT cameras that are midrange zoom and have outstanding optical quality:

Panasonic 12-35
Olympus 12-40

The lenses above are constant aperture and weather sealed they are ideal for outdoor use however they do not offer a shallow depth of field for subject isolation as they really are f/5.6 in full frame equivalent and they are also slow meaning they will take you to the ISO 2500 zone if you try street photography or shooting movies in your living room.

Prime Rules

If you want fast lenses in MFT you need to have prime lenses, this is due to the physical constraint of the format.

Here my selection, I am not a fan of vintage lenses or full manual lenses, I like the best optical quality and if I want to add a vintage feel I do it in post.

From left: Panasonic 12mm, Sigma 16mm, Panasonic 25mm, Panasonic 42.5 all (at least) 1.4 lenses

In more detail:

Panasonic 12mm 1.4

The Panasonic 12mm 1.4 is an expensive lens that I use for astrophotography and gimbals plus low light narrow room indoor shots.

It is weather sealed, extremely sharp and fast to focus and works in full auto focus on a gimbal.

Home Sweet Home
Star Trail with 12mm 1.4
Gimbal
Sigma 16mm 1.4

The Sigma 16mm 1.4 must be the best value prime on the market for MFT lenses. I use it in street photos and for videos. It is almost a 35mm full frame lens.

-20200213-11.jpg
street photography with Sigma 16mm
Garden Overview
Panasonic 25mm

The Panasonic 25mm is a workhorse for small group portraits and ideal lens for movie style video.

25mm 1.4
Kids video with 25mm
Nocticron 42.5

The Panasonic 42.5 Nocticron is probably the best portrait lens on MFT and one of the best lenses overall. It is an f/1.2 lens however in terms of actual transmission performs the same as f1/.4 lenses but with better rendering of out of focus areas.

Nocticron portrait

Why not Olympus/Others?

Of course there are equivalent primes from other brands for all focal lengths except the 12mm. They will perform equally and as long as they can go to 1.4 all is good. I use Panasonic bodies so tend to have Panasonic lenses and I buy Sigma since a long time but this is personal. There are tons of reviews on which lenses to choose etc etc but is not my place to do such comparisons. Edit since Olympus giveaway promotion in 2020 I have replaced the Sigma 16mm 1.4 with the Olympus 17mm 1.2 as they are equally bulky. The Oly pro is a fabulous lens but at the RRP suggested not affordable for many.

How about Video?

Even more essential to have fast primes for video as you are constrained in the shutter speed you can use.

Using a 1.4 lens at 1/50 you can shoot several scenes at different ISO

ISOLuxTypical Scene
200125Dark day
40063Indoors low lit areas
80032full overcast sunset/sunrise very dark indoor
160015Near twilight
32008After Twilight dark
64004dark
128002very dark
256001Candlelight
Aperture vs environment

For my purposes this adequate for reference underwater scenes at 3.5 means I can cover 100 Lux in ambient light in movie mode before turning on the lights.

Conclusion

If you find yourselves with grainy images or videos invest in fast lenses. A lens is the eye of your camera and the sensor is the brain. Think about getting better lenses before investing in a new camera and consider that if you need to go in lower light it is not always true that getting a bigger sensor will help considering the limitation of depth of field so you may want to think about lights.

SNR in Digital Cameras in 2020

There are significant number of misconceptions about noise in digital cameras and how this depends on variables like the sensor size or the pixel size. In this short post I will try to explain in clear terms the relationship between Signal Noise Ratio (SNR) and sensor size.

Signal (S) is the number of photons captured by the lens and arriving on the sensor, this will be converted in electric signal by the sensor and digitised later on by an Analog Digital Converter (ADC) and further processed by Digital Signal Processors (DSP). Signal depending on light is not affected by pixel size but by sensor size. There are many readings on this subject and you can google it yourself using sentences like ‘does pixel size matter’. Look out for scientific evidence backed up by data and formulas and not YouTube videos.

S = P * e where P is the photon arrival rate that is directly proportional to the surface area of the sensor, through physical aperture of the lens and solid angle of view, and e is the exposure time.

This equation also means that once we equalise lens aperture there is no difference in performance between sensors. Example two lenses with equivalent field of view 24mm and 12mm on full frame and MFT with crop 2x when the lens aperture is equalised produce the same SNR. Considering a full frame at f/2.8 and the MFT at f/1.4 gives the same result as 24/2.8=12/1.4 this is called constrained depth of field. And until there is sufficient light ensures SNR is identical between formats.

Noise is made of three components:

  1. Photon Noise (PN) is the inherent noise in the light, that is made of particles even though is approximated in optics with linear beams
  2. Read Noise (RN) is the combined read noise of the sensor and the downstream electronic noise
  3. Dark Current Noise (DN) is the thermal noise generated by long exposure heating up the sensor

I have discovered wordpress has no equation editor so forgive if the formulas appear rough.

Photo Noise is well mapped by Poisson distribution and the average level can be approximated with SQRT(S).

The ‘apparent’ read noise is generally constant and does not depend on the signal intensity.

While 3 is fundamental to Astrophotography it can be neglected for majority of photographic applications as long as the sensor does not heat up so we will ignore it for this discussion.

If we write down the Noise equation we obtain the following:

Noise=sqrt({PN}^2+{RN}^2+{DN}^2)

Ignoring DN in our application we have two scenarios, the first one is where the signal is strong enough that the Read Noise is considerably smaller than Photon Noise. This is the typical scenario in standard working conditions of a camera. If PN >> RN the signal to noise ratio becomes:

SNR =sqrt S

S is unrelated to pixel size but is affected by sensor size. If we take a camera with a full frame and one with a 2x crop factor at high signal rate the full frame camera and identical f/number it has double the SNR of the smaller 2x crop. Because the signal is high enough this benefit is almost not visible in normal conditions. If we operate at constrained depth of field the larger sensor camera has no benefit on the smaller sensor.

When the number of photons collected drops the Read Noise becomes more important than the photon noise. The trigger point will change depending on the size of the sensor and smaller sensor will become subject to Read Noise sooner than larger sensors but broadly the SNR benefit will remain double. If we look at DxOMark measurements of the Panasonic S1 full frame vs the GH5 micro four thirds we see that the benefit is around 6 dB at the same ISO value, so almost spot on with the theory.

Full Frame vs MFT SNR graph shows 2 stop benefit over 2x crop

Due to the way the curve of SNR drops the larger sensor camera will have a benefit or two stops also on ISO and this is the reason why DxOMark Sport Score for the GH5 is 807 while the S1 has a sport score of 3333 a total difference of 2.046 stops. The values of 807 and 3333 are measured and correspond to 1250 and 5000 on the actual GH5 and S1 cameras.

If we consider two Nikon camera the D850 full frame and the D7500 APSC we should find the difference to be one stop ISO and the SNR to drop at the same 3 dB per ISO increment.

The graphic from DxoMark confirms the theory.

Full Frame vs APSC SNR graph shows 1 stop benefit over 1.5x crop

If the SNR does not depend on pixel size, why do professional video cameras and, some high end SLR, have smaller pixel count? This is due to a feature called dual native ISO. It is obvious that a sensor has only one sensitivity and this cannot change, so what is happening then? We have seen that when signal drops, the SNR becomes dominated by the Read Noise of the sensor so what manufacturers do is to cap the full well capacity of the sensor and therefore cap the maximum dynamic range and apply a much stronger amplification through a low signal amplifier stage. In order to have enough signal to be effective the cameras have large pixel pitch so that the maximum signal per pixel is sufficiently high that even clipped is high enough to benefit from the amplification. This has the effect of pushing the SNR up two stops on average. Graphic of the read noise of the GH5s and S1 show a similar pattern.

Panasonic Dual Gain Amplifier in MFT and Full Frame cameras shows knees in the read noise graphs

Sone manufacturers like Sony appear to use dual gain systematically even with smaller pixel pitch in those cases the benefit is reduced from 2 stops to sometimes 1 or less. Look carefully for the read noise charts on sites like photonsforphotos to understand the kind of circuit in your camera and make the most of the SNR.

Because most of the low light situation have limited dynamic range, and the viewer is more sensitive to noise than DR, when the noise goes above a certain floor the limitation of the DR is seen as acceptable. The actual DR is falling well below values that would be considered acceptable for photography, but with photos you can intervene on noise in post processing but not DR, so highest DR is always the priority. This does not mean however that one should artificially inflate requirements introducing incorrect concepts like Useable DR especially when the dual gain circuit reduce maximum DR. Many cameras from Sony and Panasonic and other manufacturers have a dual gain amplifier, sometimes advertised other times not. A SNR of 1 or 0 dB is the standard to define useable signal because you can still see an image when noise and signal are comparable.

It is important to understand that once depth of field is equalised all performance indicators flatten and the benefit of one format on the other is at the edges of the ISO range, at very low ISO values and very high ISO and in both cases is the ability of the sensor to collect more photons that makes the difference, net of other structural issues in the camera.

As majority of users do not work at the boundaries of the ISO range or in low light and the differences in the more usual values get equalised, we can understand why many users prefer smaller sensor formats, that make not just the camera bodies smaller, but also the lenses.

In conclusion a larger sensor will always be superior to a smaller sensor camera regardless all additional improvement made by dual gain circuits. A full frame camera will be able to offer sustained dynamic range together with acceptable SNR value until higher ISO levels. Looking for example at the Panasonic video orientated S1H the trade off point of ISO 4000 is sufficient on a full frame camera to cover most real-life situation while the 2500 of the GH5s leaves out a large chunk of night scenes where in addition to good SNR, some dynamic range may still be required.